Archive for the ‘Robotics’ Category

I came across a very cool video today morning and that gives this post its name. Before I get into that, I think it would be much desirable to give an introduction to Ornithopters in general and talk about some robotic ornithopters. For those interested solely in the video, well it is at the end of the post (second last video).



An Ornithopter basically means an aircraft (even a robot) that can fly by flapping its wings. Though the word might sound complicated initially (Although the prefix Ornith- is well known). All of us at some point in time (whether as a childhood fantasy or as a serious hobby or professional work) have wanted Ornithopters. Ornithopters have been a fantasy since very ancient times, and it is obvious to have been as birds have always fascinated and amazed humans. There have been many reported Ornithopters in Hindu mythology. Also the legend of Daedalus and Icarus is well known, in which Daedalus designed feathered wings to fly out of the island of Crete on to which he was imprisoned.

The legendary Leonardo Da Vinci – A genius  imprisoned in a time where his ideas just could not have been realized, made some designs of Ornithopters and other glider type flying machines (but let’s avoid machines that do not have any moving wings in this post, though some are very cool). Some of which were very good engineering designs.


Click to Enlarge

Though we tend to regard the idea of wing powered machines as failed because of the success of modern day style aircraft there have been many successful flights. The first reported to have flown successfully was made in 1929 by Alexander Lippisch, it flew about 300 meters before the flight was terminated due to the obvious limitations of human muscle power. A number of motorized ornithopters have been made since then. A number of people take  Ornithopters as a serious hobby.


Modern Ornithopters

These days though, the interest has been more in ornithopters that resemble insects, such as bees, both as toys and sophisticated autonomous flying spy robots. The size of such Miniature Aerial Vehicles would ensure they are impossible to detect and hence are perfect for spying missions. Especially in the case of urban warfare when the opposing party might be holed up in a building. Thus, needless to say these can be very helpful in counter-terror operations. The aim in making such bots would be to make them very low cost with flight times as high as 5-6 hours. Let me cite some examples of some cool miniature aerial vehicles of the ornithopter category.

After some early feasibility studies done at the Lincoln laboratories at the MIT, DARPA in 1997 began a multi-million dollar program to make some sophisticated Miniature Aerial Vehicles (MAVs), some of the designs and projects also included ornithopters.

One such ornithopter was the MicroBat ornithopter developed at the California Institute of Technology along with AeroVironment and UCLA.


[The MicroBat Ornithopter, Image Source]

This paper reports the making  of the MicroBat Ornithopter. The excerpt to the paper:

This paper reports the successful development of “Microbat,” the first electrically powered palm-sized ornithopter. This first prototype was flown for 9 seconds in October 1998. It was powered by two 1-farad super capacitors. Due to the rapid discharge of the capacitor power source, the flight duration was limited. To achieve a longer flight, a rechargeable battery as a power source is preferred. The second prototype houses a small 3-gram rechargeable Ni-Cad battery. The best flight performance for this prototype lasted 22 seconds. The latest and current prototype is radio-controlled and is capable of turning left or right, pitching up or down. It weighs approximately 12.5 grams. So far, the best flight duration achieved is 42 seconds. The paper also discusses the study of flapping-wing flight in the wind tunnel using wings developed by MEMS technology. This enables a better understanding the key elements in developing efficient wings to achieve aerodynamic advantage in flapping-wing flight.

Another research group led by Robert C. Michelson made another Ornithopter called the Entomopter. This went one step ahead and can be called a milestone in MAV ornithopter development. The aim was to closely mimick the flight of birds and thus totally eliminate the usage of gears and motors. The entomopter is driven by wings that are driven by a reciprocating chemical muscle.


Click to Enlarge


Ornithopter Toys

There are now a number of companies that offer ornithopter toys. One of the most well known probably is the FlyTech Dragonfly from WowWee, It is a remote controlled wireless ornithopter. It seems like a pretty fun toy. You can see a video on this toy here >>

800px-flytech_dragonfly_blue_1200px [FlyTech DragonFly Ornithopter]

A number of people take making ornithopters as a very serious hobby. If you wish to make one, then I would direct you to this page.


Butterfly Ornithopter

Finally I come to the part that gave this blog post its title. ;-)

In a paper at IROS 2008, researchers from the Shimoyama – Matsumoto Lab at the university of Tokyo presented their work on an extremely light butterfly ornithopter.


[Butterfly Ornithopter: Image Source]

The artificial butterfly wing consists of a thin polymer membrane which is supported by viens of plastic having rectangular cross section. The purpose of this paper was to study the effect of veins on the performance of flight. The parameters for this “butterfly” are more or less comparable to that of an actual butterfly.The weight of the ornithopter including the wings is just about 0.39 gms and the flapping frequency 10 Hz.

Here is a fantastic video of the Ornithopter depicted in the figure above:


Some more work on Ornithopters at Shimoyama – Matsumoto Lab:

Since I have just mentioned the work on the Butterfly Ornithopter, there is some cool work going at the Shimoyama – Matsumoto Lab on ornithopters.

>> Dragonfly Type of Ornithopters

>> Butterfly Type of Ornithopters

>> Hovering Flight of Ornithopters


[Hovering Type Ornithopter: Image Source]


Bio-Inspired Flying Robots

Finally before ending, I would like to post a bonus video ;-)

This video was the winner at the AAAI – 08 video contest. Like the video on Morphogenesis (Swarm Intelligence) which I posted about 10 months back, which was also a winner in the same contest, this video too is excellent.


Quick Links:

1. MAVSTAR – Micro Aerial Vehicles for Search Tracking and Reconnaissance.

2. A Reciprocating Chemical Muscle for Micro Air Vehicle “Entomopter” Flight – GTRI

3. Nano Air Vehicle – DARPA

4. Ornithopter Zone – Excellent site for the hobbyist.

5.  Project Ornithopter – Project on making Ornithopters on a much larger scale than those discussed in this post.


Onionesque Reality Home >>

Read Full Post »

The idea of spherical robots is not new, however they are still interesting and Rotundus, the spherical robot that happened to be in the Popular Science best of ’08 is very interesting.

groundbot[Groundbot, Image Soure: PopSci]

Click to Enlarge

The Rotundus is driven by a pendulum inside the spherical casing. This pendulum controlled by a motor gives the robot direction. Getting the pendulum to move forward makes the robot to roll forward and moving it left or right gives it the ability to steer. The makers of this robot hope to make it autonomous with improvements. They hope to integrate in it a GPS so that it can follow specified routes to patrol and to incorporate radar sensors to help move about obstacles. They also plan to give it sufficient power to move up on slopes.


[Rotundus: Image Source]

From Popular Science:

The GroundBot is a spherical sentry designed to roll up to 6 mph through just about anything—mud, sand, snow and even water. Two gyroscopically steadied wide-angle cameras and a suite of sensors give remote operators a real-time, 360-degree view of the landscape, letting them zoom in on prowlers or detect gas leaks, radioactivity and biohazards. Originally invented by Swedish physicists to explore other planets, the GroundBot features a tough design that requires almost no maintenance and can also be programmed to run autonomously. Its sealed shell protects its interior against grit and allows it to survive steep drops, while a rubber skin dampens vibration and provides traction. To get rolling, the robot simply shifts its weight. Its center of mass is suspended from a pendulum inside the sphere, so motors just push the pendulum to the front, to the back, or to the side. Lithium-ion batteries provide up to 16 hours of spy time.

The advantages of a spherical robot are manifold, its design is extremely non-complicated. It offers good protection to the sensors and equipment sealed inside the sphere. Rotundus is very light, just about 25 Kilos, but the low weight advantage is multiplied as the rotundus is sealed. That means that it has a low density and can thus float. Thus it may be used to operate on-road, off-road and over water! Sealing the bot has other advantages than simply allowing the robot to have low density so that it can float, it also ensures that no sand can get inside to interfere with the motors and etc. The sealing also makes the robot of good use in gas leak scenarios as electrical sparks (if any) in the inside are sealed off. The design also makes the robot a very silent operator.

Check the following video showing the Rotundus roll along in snow:

A group of Rotundus robots may be used as helper bots along with the new Mars rover, the SUV sized Mars Research Laboratory that is expected to be launched by next fall.

The Rotundus has some obvious limitations. Like it can’t operate properly inside buildings as it can’t move up stairs. For such purposes biologically inspired bots remain the best bet IMO. See some of them here, really cool research:

Quick Links:

1. Rotundus

Onionesque Reality Home >>


Read Full Post »

In a number of seminars at a lot of universities or industry interactions one of the hot topics these days is efficient wireless power transfer and the pressing need and desirability of it. It is even more interesting given that wireless power is nothing new at all. One of the earliest patents in this area was given in 1900 to the legendary Nikola Tesla (Patent number: 649621) and there has been a discussion on it ever since. Probably now is the time to really realize Tesla’s vision with the number of devices of daily usage growing rapidly.

[Left Nikola Tesla | Right Alanson Sample, Intel Engineer Demonstrating WREL (Image Source)]

Intel has been at present working on what they call the Wireless Resonant Energy Link, which is based on the work of some MIT physicists. In the image above, an Intel engineer is seen demonstrating powering of a 60 W bulb wirelessly. Doing so requires more power than what is needed to charge a laptop. The implications of this technology can be immense. However the adverse effects of such technology on humans remain to be seen but are not viewed as a major impediment to its development.

Another area that is being discussed extensively these days is claytronics, catoms or simply programmable matter. Let’s take a brief digression into this before coming back to the original topic.

Claytronics: Claytronics seems to be one of the most futuristic and promising application areas of the intersection of Robotics, Swarm Intelligence and Computer Science among others. Claytronics is a field concerning reconfigurable nanoscale robots (which are called Claytronic Atoms or Catoms) which can operate as a swarm and can be desgined to form much more complex elements and perform complex tasks. These sub-millmeter computers eventually would have the ability to move around, communicate with other computers, and even electrostatically attach to each other to allow the swarm to take different shapes.

Catoms also referred to as programmable matter could reconfigure to form almost any shape, take any color or texture. Some interesting speculations include that catoms could be morphed to form replicas of humans (for virtual meetings) as well.  For a brief initiating idea have a look at the video below:

Work on this has been done by Prof Seth Goldstein and his group at Carnegie Mellon and is still on under the name the Claytronics Project. This work has been expanded upon by Intel researchers.

A senior researcher at Intel Jason Campbell has the following to say on just SOME possibilities that we could have in the future from programmable matter.

Think of a mobile device, My cell phone is too big to fit comfortably in my pocket and too small for my fingers. It’s worse if I try to watch movies or do my e-mail. But if I had 200 to 300 milliliters of catoms, I could have it take on the shape of the device that I need at that moment. For example, the catoms could be manipulated to create a larger keypad for text messaging. And when the device wasn’t being used, I could command it to form its smallest shape or even be a little squishy, so I can just drop it in my pocket.

Battery Powered Robots, An impediment to Research in SI based Robotic Systems:

There has been a lot of research going on swarm robotics. Taking just two examples, consider the work of James McLurkin of the CSAIL, MIT and the work at Ecole Polytechnique Federale de Lausanne (EPFL) in Lausanne, Switzerland. A lot of James’ work can be seen here, with a number of videos and papers available for download.

In the video below, a swarm of 278 miniature e-puck robots move around. All of them are battery powered. Battery powered robots can not only be a headache but a severe research impediment as the size of the swarm increases.

It thus would be very desirable that the swarm is wirelessly powered.

So, in short a lot of work is being done in the above two fields but what is also required is an intersection of the two, and this is exactly what Travis Deyle of Georgia Tech and Dr Matt Reynolds of Duke have done. Their work, Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. presented at the IEEE ICRA this year details the construction of a 60cmx60cm surface that provides wireless power and bi-directional communication to an initial swarm of 5 line following robots. Each robot had a power consumption of about 200 mW.

[Image Courtesy : Travis Deyle]

An actual robot looks like the following in close up.

Wirelessly Powered Robot Swarm from Travis on Vimeo.

For more extensive details about the setup and circuit details have a look at their paper and the presentation slides.

Related Posts:

Morphogenesis and Swarm Robotics

Onionesque Reality Home >>

Read Full Post »

General Background: Since childhood i have enjoyed sketching and painting, and very much at that! Sometimes i found myself copying an existing image or painting, making small changes here and there in it. Yes, the paintings came out beautiful (or so i think!), but one thing always made me unhappy, i thought that the creativity needed to make original stuff was missing at times (not always). It was not there all the time. It came in bursts and went away.

I agree with Leonel Moura (from his article) that creativity is basically produced due to different experiences and interactions. Absence or lack of which could make art lose novelty.

Talking of novelty, how about looking at art in nature? Richard Dawkins states that the difference between human art or design and the amazingly “ingenious” forms that we encounter in nature, is due tho the fact that Human art originates in the mind , while the natural designs result from natural selection. Which is very true. However it is another matter that natural selection and cultural selection, that will ultimately decide on the “popularity” of an art don’t function in the same way. Anyhow How can we remove the cultural bias or the human bias that we have in our art forms?
Answers in Artificial Life: Artificial life may be defined as “A field of study devoted to understanding life by attempting to derive general theories underlying biological phenomena, and recreating these dynamics in other physical media – such as computers – making them accessible to new kinds of experimental manipulation and testing. This scientific research links biology and computer science.”
Most of the A-Life simulations today can not be considered truly alive, as they still can not show some properties of truly alive systems and also that they have considerable human bias in design. However there are two views that have existed on the whole idea of Artificial Life and the extent it can go.
Weak A-Life is the idea that the “living process” can not be achieved beyond a chemical domain. Weak A-life researchers concentrate on simulating life processes with an underlying aim to understand the biological processes.
Strong A-Life is exactly the reverse. John Von Neumann once remarked life is a process which can be abstracted away from any particular medium. In recent times Ecologist Tom Ray declared that his computer simulation Tierra was not a simulation of life but a synthesis of life. In Tierra, computer programmes compete for CPU time and access to the main memory. These programs are also evolvable, can replicate, mutate and recombine.
Relating A-Life to Art: While researching on these ideas and the fact that these could be used to generate the art forms that i talked about in the first paragraph i came across a few papers by Swarm Intelligence Guru Vitorino Ramos and a couple of articles by Leonel Moura who had worked in collaboration with Dr Ramos on precisly this theme.
Swarm Paintings: Thus the idea as i had mentioned in my very first paragraph is to create an organism ideally with minimum pre-commitment to any representational art scheme or human style or taste. Sounds simple but is not so simple to implement!
There are a number of projects that have dealt with creating art, but these mostly have been evolutionary algorithms that learn from human behavior, and learn about human mannerisms and try to create art according to that. The idea here is to create art with a minimum of human intervention.
I came across a project by Dr Vitorino Ramos to which i had pointed out implicitly in the last paragraph. This project called ARTSBOT (ARTistic Swarm roBOTs) project. This project tries to address this issue of minimizing the human intervention in aesthetics , ethnicity, taste,style etc. In short their idea was to remove or to minimize the anthropocentric bias that pervades all our art forms. Obviously all this can have massive implications in our understanding of the biological processes also, however here we’ll talk of only art.
Two of the first paintings that emerged were:
(Source: Here)
(Source: Here)
These paintings were among the first swarm paintings by Leonel Moura and Vitorino Ramos. Now we see that these seem detached from a functional human pre-commitment. They don’t seem to represent any emotion or style or taste. However they still look very pleasant!
However the point to be understood and to be noted is that these are NOT random pictures created either by a programme or by a swarm of robots moving “randomly”. These pictures were generated by a horde of artificial ants and also by robots. They are not random, but they EMERGE from a process of pheromone deposition and evaporation as was simulated in this system from ants. Thus the result that we have above is a Colony Cognitive Map. The colony cognitive map is analogous to a cognitive map in the brain. I will cover the idea of a colony cognitive map in the next post.
A couple of more beautiful paintings can be seen below!
(Source for both images : Here>>)
Though i have already mentioned how these art forms emerge, i would still like to quote a paragraph from here:

The painting robots are artificial ‘organisms’ able to create their own art forms. They are equipped with environmental awareness and a small brain that runs algorithms based on simple rules. The resulting paintings are not predetermined, emerging rather from the combined effects of randomness and stigmergy, that is, indirect communication trough the environment.
Although the robots are autonomous they depend on a symbiotic relationship with human partners Not only in terms of starting and ending the procedure, but also and more deeply in the fact that the final configuration of each painting is the result of a certain gestalt fired in the brain of the human viewer. Therefore what we can consider ‘art’ here, is the result of multiple agents, some human, some artificial, immerged in a chaotic process where no one is in control and whose output is impossible to determine.
Hence, a ‘new kind of art’ represents the introduction of the complexity paradigm in the cultural and artistic realm.’

A Painting bot is something like in the picture shown below:

A swarm of robots at work:

The final art generated by the swarm of these robots is beautiful!

(Photo Credit for the three pictures above: Here>>



The work of Dr Ramos and Leonel Maura can be summed up as:
1. The human is only the “art-architect”, the “swarm” is the artist.
2. The “life” of Artificial Life shows characteristics like natural life itself namely Morphogenesis, ability to adapt to changing environments, evolution etc.
Leonel Moura’s wonderful article states that the final aim is to create an “Artificial Autopoietic System”, intriguing indeed and eagerly awaited!!
Such simulations could change the way we understand the biological processes and life.
Also i am now thinking how could music be produced based on the same or similar ideas. I wonder if Swarm music could be available. It would be most interesting and i can’t wait to listen to it already!
Have a look at this video by Leonel Moura, having some time lapse footage of robots painting.
1. Ant- Swarm Morphogenese By Leonel Moura
2. On the Implicit and on the Artificial – Morphogenesis and Emergent Aesthetics in Autonomous Collective Systems, in ARCHITOPIA Book, Art, Architecture and Science, INSTITUT D’ART CONTEMPORAIN, J.L. Maubant et al. (Eds.), pp. 25-57, Chapter 2, Vitorino Ramos.
3. A Strange Metamorphosis [From Kafka to Red Ant], Vitorino Ramos
Follow the following links to follow on more exciting papers and paintings.

Read Full Post »

The old Orion project had a few potential problems. There were doubts regarding the stability of the system, but with modern simulation technology this can be verified rather easily and without the need for an actual empirical investigation. The main problem however was the possible nuclear fallout. This was the most important reason due to which the project was shelved. The treaty of 1963 came as the final blow.

Even with the newer “versions” of Orion like projects there are all sorts of problems.

While the Orion was important for its time (in terms of stimulating possible engineering concepts), I would currently view it as “post period”.
A better possible concept is when will we have the technology to effectively observe “everything”? If you can observe it you do not have to “go there”. There are of course limits, and of course these should be discussed. But current planned satellites allow us to “go there” much more effectively without the need for an Orion like project.

I believe the Mars rovers can provide a good example of how to do things now. They have lasted something like 2-3 years longer than their design life. So long as one builds in fault tolerance bots could have even longer lifetimes.
We are not going to really get there until we have true nanorobots that can be organized to operate collectively because these can be launched with very small rockets.

The solution to managing things is what is known as a “broadcast architecture” (which is very similar to what NASA uses now with satellites but on a somewhat larger scale).

Even with the mini-mag there are problems. First, basing a propulsion system on 245 Cm presumes that you could synthesize sufficient amounts of it. That is a massive undertaking.

Second, it assumes one needs to navigate 100ton spaceships around the solar system. We do not. We need to be able to launch nanorobots into orbits that can easily be transported to various places in the solar system to manage development. That requires lots of micro-rockets — not the huge spaceships designed to transport humans to places they were they are not adapted to live. This i have already touched upon in the previous paragraph. The paper (cited in the previous entry) is a classic example of good physicists doing good work who have little understanding of nanotechnology or microbiology. They also are stuck in 1960’s era concepts that “we” should go there when we have to completely alter the human genome before we should even consider that. And by then we will likely be dead or uploaded and so it is pointless to attempt 1960’s era transport of us.

Related Articles:

Death of a project: Project Orion

Possible Rebirth of Project Orion?

Morphogenesis and Swarm Robotics

Onionesque Reality Home >>

Read Full Post »

There have been quite a few posts on nature inspired computing. Here is another, this is a really cool video on the same. Have a look at the gait of the yellow salamander mimic bot and also the caterpillar bot at the end of the video!

Have fun!

The introduction to this video reads as:

Robotics researchers are increasingly turning to nature for inspiration. Watch a robotic salamander, a water strider robot, mechanical cockroaches and some cool self-configuring robots.

Footage courtesy of: University of Essex, Ecole Polytechnique Federale de Lausanne, Carnegie Mellon University, ULB-EPFL, Tokyo Institute of Technology, National Institute of Advanced Science and Technology (AIST).

My congratulations and best wishes to the researchers who are trying to develop such bots and also to New Scientist for such a good video!

Read Full Post »

Here is an amazing video!

Something about this video first from the you-tube information about it.

An introduction to swarm intelligence, swarm robotics and morphogenesis. This video won the Best Video award at the AAAI-07 conference Vancouver Canada. The scientific research was performed by Anders Lyhne Christsensen, Rehan O’Grady and Marco Dorigo. The video was directed by Andreia Onofre.

Swarm Intelligence is an AI technique that is based on the collective behavior of decentralised and self organised systems. Take an ant colony for example, an ant hill is an extremely complex structure, with even things like temperature control in place. It is difficult to imagine a simple ant doing any of it! So it is basically the “swarm” of ants that is responsible for such emergent and intelligent solutions though the “constituents” of the systems (i.e ants) are simple and independent “units”. Like ants also can pick up prey many times their weight by forming very precise structures encircling the object under consideration.

like in the picture below the ants take up a comparatively much heavier fly.

photo credit with full regards : here>>


The video basically explains the same and also gives an idea on how it could be done using robots. For example a bird swarm can make very different and complex shapes depending on the set of rules under use (which in turn will depend on the scenario). I will accompany this statement by a post on a bird swarm and how they do it sometime soon. If you change the set of rules you could change the shape you get, and most of these shapes could be used to perform some intelligent task. This gives the swarm a lot of flexibility. This is basically what is Morphogenesis.

Morphogenesis could be used by a swarm of robots to move heavy objects (as an illustration to this have a look at this video, in which a group of robots pull away a child. The video can be seen here>>) which could be used in fire-fighting applications etc, to bridge gaps etc. A swarm of nano-bots could use morphogenesis to perform very specific tasks inside the human body!

Please have a look at this award winning video!

I personally thank and congratulate the director of this video for putting it all so succinctly in a matter of under 5 minutes.

Read Full Post »

Older Posts »