Posts Tagged ‘Freeman Dyson’

From Eros to Gaia

I had been re-reading “From Eros to Gaia” by Freeman Dyson after some years. I have a bad habit of never reading prefaces to books, however I am glad I read it this time around because of this sobering passage that appears in it:

My mother used to say that life begins at forty. That was her age when she had her first baby. I say, on the contrary, that life begins at fifty-five, the age when I published my first book. So long as you have courage and a sense of humour, it is never too late to start life afresh. A book is in many ways like a baby. While you are writing, it is curled up in your belly. You cannot get a clear view of it. As soon as it is born, it goes out into the world and develops a character of its own. Like a daughter coming home from school, it surprises you with unexpected flashes of wisdom. The same thing happens with scientific theories. You sit quietly gestating them, for nine months or whatever the required time may be, and then one day they are out on their own, not belonging to you anymore but to the whole community of scientists. Whatever it is that you produce– a baby, a book, or a theory– it is a piece of the magic of creation. You are producing something that you do not fully understand. As you watch it grow, it becomes part of a larger world, and fits itself into a larger design than you imagined. You belong to the company of those medieval craftsmen who added a carved stone here or a piece of scaffolding there, and together built Chartres Cathedral.



Read Full Post »

I am late with my echo statement on this.

Over the past few days, the internet is abuzz with news of Craig Venter and his team for creating the first fully functional cell, controlled by synthetic DNA and discussions on what might be the ethical consequences of future work in this area.

The fact that this has happened is not surprising at all. Dr Venter has been very open about his work and has been promoting it for some years now.  For instance, a couple of years ago there was a wonderful TED talk in which Venter talks about his team being close to creating synthetic life. The latest news is ofcourse not of synthetic life, but a step closer to that grand aim.

Another Instance : Two years there was a brainstorming session whose transcript was converted by EDGE into a book available for free download too.

Dimitar Sasselov, Max Brockman, Seth Lloyd, George Church, J. Craig Venter, Freeman Dyson, Image Courtesy - EDGE

The BOOK can be downloaded from here.

So from such updates, it did not surprise me much when Venter made the announcement.


Ethics : There have been frenzied debates on what this might lead us to on the internet, on television and elsewhere. These discussions on ethics appear to me to be inevitable and I find it most appropriate to quote the legendary Freeman Dyson on it.

“Two Hundred years ago, William Blake engraved The Gates of Paradise, a little book of drawings and verses. One of the drawings, with the title “Aged Ignorance”, shows an old man wearing professional eyeglasses and holding a large pair of scissors. In front of him, a winged child running naked in the light from a rising sun. The old man sits with his back to the sun. With a self satisfied smile he opens his scissors and chips the child’s wings. With the picture goes a little poem :

“In Time’s Ocean falled drown’d,
In aged ignorance profound,
Holy and cold, I clip’d the Wings
Of all Sublunary Things.”

This picture is an image of the human condition in the era that is now beginning. The rising sun is biological science, throwing light of every increasing intensity onto the processes by which we live and feel and think. The winged child is human life, becoming for the first time aware of itself and its potentialities in the light of science. The old man is our existing human society, shaped by ages of past ignorance. Our laws, our loyalities, our fears and hatreds, our economic and social injustices, all grew slowly and are deeply rooted in the past. Inevitably the advance of biological knowledge will bring clashes between the old institutions and new desires for human improvement. Old institutions will clip the wings of human desire. Up to a point, caution is justified and social constraints are necessary. The new technologies will be dangerous as well as liberating. But in the long run, social constraints must bend to new realities. Humanity can not live forever with clipped wings. The vision of self-improvement which William Blake and Samuel Gompers in their different ways proclaimed, will not vanish from the Earth.”

(The above is an excerpt from a lecture given by Freeman Dyson at the Hebrew University of Jerusalem in 1995. The lecture was pulished by the New York Review of Books in 1997 and later as a chapter in Scientist as Rebel. )

Artificial Life Beyond the Wet Medium :

Life is a process which can be abstracted away from any particular mediumJohn Von Neumann

Wet Artificial-Life is what is basically synthetic life (in synthetic life you don’t really abstract the life process into another medium, but you digitize it and recreate it instead as per your requirement).

I do believe abstracting and digitizing life from a “wet chemical medium” to a computer is not very far off either i.e. a software that not only would imitate “life” but also synthesize it. And coupled with something like Koza’s Genetic Programming scheme embedded in it, develop something that possesses some intelligence other than producing more useful programs.

Coded Messages :

This is the fun part from the news about Venter and his team’s groundbreaking work. The synthetic DNA of the bacteria has a few messages coded into it.

1. “To live, to err, to fall, to triumph, to create life out of life.” – from James Joyce’s A Portrait of the Artist as a Young Man.

James Joyce is one of my favourite writers*, so I was glad that this was encoded too. But I find it funny that what this quote says can also be the undoing of synthetic life or rather a difficult problem to solve. The biggest enemy of synthetic life is evolution (creating life out of life :), evolution would ensure that control of the synthetic bacteria is lost soon enough. I believe that countering this would be the single biggest challenge in synthetic biology.

*When I tried reading Ulysses, I kept giving up. But had this compulsive need to finish it anyway. I had to join an Orkut community called “Who is afraid of James Joyce” and after some motivation could read it! ;-)

2. What I can not build, I can not understand – Richard P. Feynman

This is what Dr Venter announced, isn’t “What I can not create, I do not understand” the correct version?

Feynman's Blackboard at the time of his death: Copyright - Caltech

3. “See things not as they are, but as they might be” – J. Robert Oppenheimer from American Prometheus


Recommendations :

1. What is Life – Erwin Schrodinger (PDF)

2. Life – What A Concept! – EDGE (PDF)

3. A Life Decoded : My Genome, My Life – C. J. Venter (Google Books)


Onionesque Reality Home >>

Read Full Post »

Disclaimer: This is not a post contrary to the nature of this blog. This is not a political post as some might think. My blog is basically about science and I mention I have an interest in people and minds, and this is what this particular post is about. No politics or political opinions in this post at all.

I think my job and aim (one of them) in life is to do good science and I think politics should be kept out of science. Scientists though entitled to have strong opinions on these matters should focus on their primary work and not take their opinions (unless very necessary) beyond general coffee break discussions.

Edit(1 Dec 2008): I realize that there could be a confusion by what I meant by the above paragraph, a clarification is issued in the comments here.


Terrorism invokes a wide range of responses depending on the crowd one is looking at. One that is common from most societies goes along these lines – “Outrageous”, “Cowards”, “Retards”, “Beasts”, and  one could add to that a lot of censored words also. Which is almost immediately followed by diatribes on societies and religions either out in the open or in hushed tones.

There has been a major terrorist strike in the Indian city of Mumbai today morning, killing scores and more importantly aimed to destabilize a country growing in clout rapidly (eyewitness account on the attacks). Ofcourse the terrorists would never succeed in that for a multiplicity of reasons, however this is not the objective of my post. India has been under attack by terror for more than one and a half decade now, more than what any other country has faced in the world.

After such strikes there are a number of animated discussions with people thumping their desks and asking angrily: Where is security for the citizen? Where are the security forces? Where are the Intelligence and spy agencies? Where is the government? Is it sleeping? And a number of other totally understandable questions which are expected from and SHOULD come from any citizen who would get angry or upset after such incidences. A lot of people say: destroy terrorist hideouts, destroy terror networks, kill all terrorists etc. Fair enough. But the basic question that most people duck is what actually makes terrorists? What prompts a young man to hold a gun and indulge in suicidal behavior and kill innocent people indiscriminately, almost heartlessly?

I had been reading on this for some time now, for almost three four years, and also I have some gifts in terms of sound observational powers to do some people watching to understand and make sense of things. Over the past couple of years, books that have resonated with my own understanding of the situation which i don’t claim to be above that of a novice, but nonetheless that of a concerned world citizen have been:

1. A review by Freeman Dyson of Dan Dennett’s book “Breaking The Spell”. Dyson has become one  writer on science and human nature whose opinions I greatly respect. Though I don’t agree with a considerable chunk of his ideas, they are most thought provoking anyway. And in my opinion thought provoking ideas are the most important.

2. Daniel Dennett: Breaking the Spell;

3. Marc Sageman: Understanding Terror Networks;

4. Emiko Ohnuki-Tierney : Kamikaze Diaries – Reflections of Japanese Student Soldiers;

A Memetics Based Social Prespective:


Daniel Dennett’s thesis is interesting, thought provoking and to a large extent true. I have written on this on a previous post. Since then there has been considerable refinement in my thoughts on it. And though I lost my patience in the post that time, I would largely still agree with Dennett’s idea. Taking some parts from that post with considerable editing (the quote below has also been taken from my previous post, this is a part of a presentation that Dan Dennett made at TED):

So you are out in the woods or this pasture, and you see this Ant crawling up this blade of grass. It climbs up to the top, and it climbs and it falls and it climbs and it falls and it climbs, trying to stay at the very top of this blade of grass. What is this Ant doing? What is it in aid of? What goals is this ant trying to achieve by climbing this blade of grass? What’s in it for the ant?

And the answer is NOTHING! There is nothing in it for the Ant. Well then, why is it doing this? Is it just a fluke? Yeah it is just a fluke.

It is a Lancet Fluke, it’s a little parasitic brain worm that has to get into the stomach of a sheep or a cow in order to continue its life cycle. So salmons, you know swim upstream to get to their spawning grounds and Lancet Flukes commandeer this passing Ant, crawl into its brain and drive it up a blade of grass like an all terrain vehicle. So there is nothing in it for the Ant, the Ant’s brain has been hijacked by a parasite that infects the brain inducing suicidal behavior.

An analogy to the above is seen in humans, For example terrorists can be seen in parallel to the “Ant” I mentioned above with their brain been hijacked by “virulent ideas” (parallel to the lancet fluke) inducing suicidal behavior. Such “ideas” are more or less embedded in their brains and removing these toxic ideas is rather difficult if not impossible. This “embedding” of “virulent” ideas is caused by a number of socio-economic factors like anger towards other cultures, trauma, ignorance, anger over repression, social injustice and probably also hate. Such embedding takes place culturally over a long period of time, after which it becomes a part and parcel of the vector (human) carrying it. If one hears stories of how the world has been cruel and unjust and how the world is out to destroy your own world from childhood, that person  will definitely be filled of hate. There are many other “ideas to die for”, like a lot of people have laid down their lives for Communism, Capitalism, Love can be said to be another brain parasite that can induce “abnormal” behavior. Others may be freedom, religion, etc.

Please Note: “Parasite” and “abnormal” are used in a neutral context. Let us say that an idea that alters behavior considerably is a “parasite” (treat it just as a word than a harmful word) and the resulting altered behavior is “abnormal”. Please do not take the literal meanings of these words used. I don’t mean to say that love is a “parasite” in the literal sense. ;-) . (Note ends).

Basically “Ideas” are like lancet flukes, entering the brains of their hosts and encouraging them to work for the continuance of the idea rather than the host or his/her progeny. On the other hand, some ideas (say like love) doubtless make their hosts more fit to survive and propagate, at least through this one mechanism, in a way they are similar to genes (that is why i mentioned that the basic scheme here is to apply evolutionary principles to how we think and behave).  And ofcourse ideas mutate – this leads to what is called the misinterpretation of the original idea by the masses.

This memetics based synthesis explains to some extent why terrorists are generally from poor, uneducated and sometimes extremely orthodox and fundamentalist backgrounds and societies. But Dennett’s treatment which speaks of virus like ideas propagating, getting mutated and propagating further, though nice and reasonable has some problems. It could be one part of the various reasons to what makes terrorists and terror networks, it (social unrest, brainwashing etc what I have covered above) though a necessary condition might not be a sufficient condition. One more reason could be what is explored and reviewed in the next part.

I was reading the review of Dennett’s book by Dyson which introduced me to two books, both extremely interesting. In most of the west and elsewhere too, the idea of looking at terrorists is looking at them as mad zombies, who are totally dehumanized, with their thought process driven by hate alone.

This view is challenged by the two books Dyson’s review introduced me to.

Kinship Amongst Cell Members:


Marc Sageman is a professor of psychiatry and ethnopolitical conflict at the University of Pennsylvania. Sageman was a foreign service and CIA officer and was posted in Pakistan in the late 80s at the time of the Soviet conflict in Afghanistan and had worked closely with the Mujahideen which made him intimately familiar with the working and structure of such networks. He in the book writes that as contrary to popular belief the bonds holding the people together in terror groups are more personal than political. Citing good evidence Sageman asserts that economic backwardness, ignorance, religious zealotry and the likes are not enough to attract the youth to terror organizations (as I mentioned at the end of the previous part), one of the prime reasons is to escape alienation. Quoting him:

Despite popular accounts of the 9/11 perpetrators in the press, in-group love rather than out group hate seems to be a better explanation for their behavior.

Such kinship gives rise to semi-independent cells and dispells the notion that recruitment in terror organizations is top-down as believed. Such comradeship also makes it difficult for intelligence agencies to track or find out information about secret operations. I will now talk about another interesting piece and then will return to Sageman’s work.

The image of the Kamikaze pilots at the end of the second world war in America was similar to what terrorists have today. The Kamikaze pilots were Japanese aviators involved in suicide missions against the allied shipping towards the end of the war, their aim being to destroy as many ships as possible.

uss_columbia_attacked_by_kamikaze[USS Columbia Attacked by a Kamikaze Suicide Mission: Wikipedia]

The book by Emiko Ohnuki-Tierney, Kamikaze Diaries:Reflections of Japanese Student Soldiers, contains extracts from diaries of Kamikaze pilots who knew they were going to die in suicide missions. As opposed to western ideas about the Kamikaze pilots, their diaries were absolutely clear in thought, free from illusions and astonishingly lucid. Some of the pilots who had had western education wrote down their tragic views of life in clear poetry. These were simple young men, neither brainwashed nor nationalistic bigots. Their diaries give a poignant point of view of the war from their frame of reference.


Now the connection that Dyson drew from the two books was extremely interesting and made perfect sense to me once it was mentioned, something of the sort: oh! why didn’t this occur to me! He goes on to elaborate, that though we don’t have first hand testimonies from many terrorists involved in suicide missions, and most probably these terrorists were not even hardly educated as well as the Kamikaze pilots, and were probably more influenced by religion and hate. However it can’t be said that they are zombies, but are fighters in a secret brotherhood that gives meaning and purpose to their lives. they are like good soldiers enlisted for an evil cause. Like the Kamikaze pilots they are motivated mostly by kinship to their comrades than by hate towards the enemy. Once the operation has been decided on by the ideologues (Dennett applies to these people very well. Not so much to the common person), it would have been unthinkable not to carry it out.

Though there are considerable differences between 1945 and 2001-08, both Sageman and Dyson write and I almost totally agree that there are a lot of similarities. The minds of the Kamikaze pilots could give clues to what goes on in the minds of terrorists on suicide missions. Thus to really prevent youth from being lured to such organizations we need to understand first what our enemies stand for and how they work.

I think the three probably unrelated references make a good case on what drives a young lad to become a terrorist. How can we prevent this from happening? This I think readers would have a better view. Also I am not trying to suggest that intelligence and other policing is to be reduced in any way.

Recommended Reads and References:

1. Review of “Breaking the Spell (link below)” By Freeman Dyson on NYRB.

2. Breaking the Spell: Religion as  Natural Phenomenon – Daniel Dennett.

3. Understanding Terror Networks – Marc Sageman.

4. Kamikaze Diaries: Reflections of Japanese Student Soldiers – Emiko Ohnuki-Tierney.

Onionesque Reality Home >>

Read Full Post »

I started writing this post on 18 June with the singular aim of posting it by 22 June. The objective of this post was to celebrate the life and ideas of Tommy Gold (May 22, 1920 – June 22, 2004) on his fourth death anniversary. But after that I did not have much access to the Internet for reasons I had posted about earlier, and so sadly I missed that date. After that I did not edit and post it as I thought there would be little point. Now I think it is okay to  post it instead of deleting it all together. A tribute to Thomas Gold would still be the aim though I regret I could not post in time.

[Image Source]

Quoting Thomas Gold (Source):

New ideas in science are not always right just because they are new. Nor are the old ideas always wrong just because they are old. A critical attitude is clearly required of every scientist. But what is required is to be equally critical to the old ideas as to the new. Whenever the established ideas are accepted uncritically, but conflicting new evidence is brushed aside and not reported because it does not fit, then that particular science is in deep trouble – and it has happened quite often in the historical past. If we look over the history of science, there are very long periods when the uncritical acceptance of the established ideas was a real hindrance to the pursuit of the new. Our period is not going to be all that different in that respect, I regret to say.

This paragraph reminds me of a post on Gaping Void, a blog that I just discovered two days back on the fantastic Reasonable Deviations. The post, titled Good Ideas Have Lonely Childhoods is highly recommended to read, as a vast majority of good ideas are heretical and this post is on a heretic. Infact this post on Gaping Void prompted me to publish this forgotten draft!

Thomas Gold was a true renaissance man, a brilliant polymath and a controversial figure who Freeman Dyson has described as a modern heretic. Gold was born as an Austrian and was educated in Switzerland and the UK, Initially he worked with Hermann Bondi and Fred Hoyle and then later accepted an appointment with the prestigious Cornell University and remained there till his death.

Gold portrays the typical rebel scientist, with a penchant for controversy and working against general and strongly held theories. Gold worked across a large number of fields- Cosmology, Biophysics, Astrophysics, Geophysics, Space Engineering etc. Throughout his career Gold never cared about being wrong or of the opposition. He had this knack of turning out to be right. He however was not afraid to be wrong, infact he has been very famously wrong two times and he took both times in good humor. Such was his intellect that he never cared of any opposition and his ideas have always been very interesting. I hope to chronicle some of his major ideas here.

Coming back, as I said he has been famously wrong two times:

1. First was the steady state theory. Gold along with Fred Hoyle and Hermann Bondi developed and published the steady state theory of the universe in 1948. The three thought that it was impossible to think that all of matter could be created out of an initial singularity. The theory proposed that new matter is created continuously and this accounts for the constant density of the expanding universe. Though this seems to have violated the first law of thermodynamics the steady state had a number of supporters in the 50s and the 60s but the discovery of the cosmic background radiation which basically is a remnant of the big bang or explosion was the first major blow to it and over time its wide acceptance declined to only a very few cosmologists like Jayant V. Narlikar, who very recently have proposed alternatives and modifications to the original idea of steady state like the quasi steady state. However whatever said and done, the competition between the Big Bang and the Steady State spurred a lot of research which ultimately has helped us understand the cosmos better as good competition always does.

2. His second major incorrect idea was proposed in 1955, when he said that moon’s surface was covered with a fine rock powder that is electro-statically supported. He later said that astronauts would sink as soon as they landed on the moon. His theory influenced the design of the American Surveyor lunar landing probes to a very large extent. But their precautions were excessive and most of the fears were unfounded, though when the Apollo 11 crew bought back soil samples from the moon, it was indeed powdery though nowhere close to the extent Gold had proposed it to be. However a lot of astronomers credit a lot of development in planetology in subsequent years to Gold’s initial work and ideas on the lunar regolith.

[The famous photo of the footprint on the Lunar Surface: The Lunar soil was powdery as predicted by Gold but nowhere to the extent he had thought so. Image Source : Wikipedia Commons]

On both the occasions Gold took “defeat” in good humor, the trademark of a good scientist is that he is never afraid to be wrong. He once remarked:

Science is no fun, if you are never wrong!

In choosing a hypothesis there is no virtue in timidity and no shame in sometimes being wrong.

The second quote is not supposed to be humorous by the way.

On most occasions however, Thomas Gold had this knack of turning out to be right inspite of facing intense criticism initially. Some of his heretical ideas that turned out right were:

1. Pitch Discriminative Ability of the Ear: One of the first of Tommy Gold’s ideas that was received with much hostility and was summarily rejected by the experts of the time was his theory and experiments on hearing and pitch discrimination. In 1946 immediately after the great war, Gold got interested in the ability of the human ear to discriminate the pitch of musical sounds. It was a question that was perplexing the auditory physiologists of the time, and Gold fresh from working with the royal navy on radars and communications thought of the physiology of hearing in those terms. The human ear can tell the difference when a pure tone changes by as little as one percent. Gold thought that the ear contained a set of resonators finely tuned, whereas the prevailing view of the time was that the internal structure of the ear was too weak and flabby to resonate and all the interpretation of the sounds and tones happened in the brain, with the information being communicated by neural signals.

Gold designed a very simple and elegant experiment to prove the experts, the professional auditory physiologists wrong. The experiment has been described by Freeman Dyson in his book, The Scientist as Rebel as he himself was a part of the experiment. Prof Freeman writes:

He (Gold) fed into the headphones a signal consisting of short pulses of a pure tone, separated by intervals of silence. The silent intervals were atleast ten times as long as the period of the pure tone. The pulses were all of the same shape, but they had phases that could be reversed independently….Sometimes Gold gave all the pulses the same phase and some times he alternated the phases so that the even pulses had one phase and the odd pulses had the opposite phase. All I had to do was to sit with the headphones on my ears and listen while Gold put in the signals with either constant or alternating phases. I had to tell him from the sound whether the phase was constant or alternating. When the silent intervals between pulses was ten times the period of the pure tone, it was easy to tell the difference. I heard a noise like a mosquito, a hum and a buzz sounding together, and the quality of the hum changed noticeably when the phases were changed from constant to alternating. We repeated the trials with longer silent intervals. I could still tell the difference, when the silent interval was as long as thiry periods.

This elegant experiment showed that the human ear could remember the phase of a signal after it has stopped for thirty times the period of the signal and proved that pitch discrimination was done not in the brain but in the ear. To be able to remember the phase, the ear should have finely tuned resonators that continue to vibrate during the period of silence.

Now armed with experimental evidence for his theory that pitch discrimination was done in the ear, Gold also had a theory on how there could be very finely tuned resonators made up of the weak and flabby material in the ear. He proposed that the ear involved an active – not a passive – receiver, one in which positive feedback, not just passive detection is involved. He said that the ear had an electrical feedback system, the mechanical resonators are coupled to the electrically powered sensors so that the overall system works like an active tuned amplifier. The positive feedback would counteract the dissipation taking place in the flabby internal structure of the ear.

Gold’s findings and ideas were rejected by the experts of the field, who said Gold was an ignorant outsider with absolutely no knowledge or training in physiology. Gold however always maintained he was right. Thirty years later, auditory physiologists armed with more sophisticated tools discovered that Gold was indeed correct. The electrical sensors and the feedback system in the ear were identified.

Gold’s two papers on hearing published in 1948 remain highly cited to this day.

2. Pulsars: One of his ideas that was rather quickly accepted was his idea on what a Pulsar was. After being discovered by radio astronomers Gold proposed that they were rotation neutron stars.

[A schematic of a Pulsar. Image Source: Wikipedia Commons]

After some initial disapproval this idea was accepted almost immediately by the “experts”. Gold himself has written this on this matter in an article authored by him titled The Inertia of Scientific Thought:

Shortly after the discovery of pulsars I wished to present an interpretation of what pulsars were, at this first pulsar conference: namely that they were rotating neutron stars. The chief organiser of this conference said to me, “Tommy, if I allow for that crazy an interpretation, there is no limit to what I would have to allow”. I was not allowed five minutes floor time, although I in fact spoke from the floor. A few months later, this same organiser started a paper with the sentence, “It is now generally considered that pulsars are rotating neutron stars”.

3. The Arrow of Time: In the 60s Gold wrote extensively on The Arrow of Time, and held the view that the universe will re collapse someday and that the arrow of time will reverse. His views remain controversial till today and a vast majority of cosmologists don’t even take it seriously. It remains to be seen if Gold’s hypothesis would be respected.

4. Polar Wandering: In the 1950s while at the royal observatory, Gold became interested in the instability of Earth’s axis of rotation or the wandering pole. He wrote a number of papers on plasmas and magentic fields in the solar system and also coined the term “The Earth’s Magnetosphere”. In 1955 he published yet another revolutionary paper “Instability of the Earth’s Axis of Rotation“. Gold made the view that large scale polar wandering could be expected to occur in relatively short geological time spans. That is, he expressed the possibility that the Earth’s axis of rotation could migrate by 90 degrees in a time of under a million years. This effectively means that in such a case, points at the equator would come to the poles and points at the poles would come at the equator. Gold argued that this 90 degree migration would be triggered by movements of mass that would cause the old axis of rotation to become unstable. A large accumulation of ice at the poles for example might be one reason why such a flip could occur. His paper was ignored largely for over 40-45 years, largely because at that time the research was focused on plate tectonics and continental drift.

In 1997 a Caltech professor Joseph Kirschvink, who is an expert in these areas published a paper that suggested that such a 90 degree flip indeed happened at least once in the past in the early Cambrian era. This holds much significance given the fact that this large scale migration of the poles coincides with the so called “Cambrian Explosion“. Gold’s work was finally confirmed after being ignored for decades.

5. Abiogenic Origin of Petroleum: When I first read about the theory of abiogenic origin of petroleum promoted by Tommy Gold and many Soviet and Ukrainian Geologists, I was immediately reminded of my old organic chemistry texts that spoke of the abiogenic origin theory given by Mendeleev almost 150 years ago. This was called Mendeleev’s Carbide Theory and it died after the biological theory of petroleum origin was widely accepted.

Speaking as a layman who has little knowledge of geology, petroleum etc, I would say any theory of petroleum origin must broadly explain the following points:

1. Its association with Brine.

2. Presence of N and S compounds.

3. Presence of biomarkers, chlorophyll and haemin in it.

4. It’s optically active nature.

According to Mendeleev’s Carbide theory:

1. The molten metals in the Earth’s interior combined with carbon from coal deposits to form the corresponding carbides.

  • Ca + 2C ---> Ca C_2
  • Mg + 2C---> Mg C_2
  • 4Al + 3C---> Al_4 C_3

2. The carbides reacted with steam or water under high temperature and pressure to form a mixture of saturated and unsaturated hydrocarbons.

  • Ca C_2 + 2H_2 O---> Ca(OH)_2 + C_@ H_2
  • Al_4 C_3 +12H_2 O---> 4Al(OH)_3 +3C H_4

3. The unsaturated hydrocarbons underwent a series of reactions such as hydrogenation, isomerisation, polymerisation and alkylation to form a number of hydrocarbons.

  • C_2 H_2 ---> C_2 H_4 ---> C_2 H_6
  • 3[C_2 H_2]---> C_6 H_6


This theory got the support by the work of Moissan and Sabatier and Senderen. Moissan obtained a petroleum like liquid by the hydrogenation of Uranium Carbide, Sabatier and Senderen obtained a petroleum type substance by the hydrogenation of Acetylene.

However the theory was in time replaced by the theory of biological origin as it failed to account for:

1. The presence of Nitrogen and Sulphur compounds.

2. Presence of Haemin and Chlorophyll.

3. Optically active nature.

After almost hundred years, the abiogenic theory was resurrected by the great Russian geologist Nikolai Alexandrovitch Kudryavtse in 1951. This was worked on extensively by a number of Russians in the coming two decades.

In the west Thomas Gold was the only major proponent of it. And this is his most controversial theory, not only because it was opposed by powerful oil industry lobbyists but also because Gold faced much flak for plagiarism, something that Gold refused to acknowledge, in his later works he cited the works of the Russian scientists in the field. He maintained that he was simply not aware of the work done by the Soviet Geologists and that he cited their work once he became aware of it. Gold proposed that the natural gas and the oil came from reservoirs from deep within the Earth and are simply relics of the formation of the Earth. And that the biological molecules found in them did not show they had a biological origin but rather that they were contaminated by living creatures. He remained critical of the proponents of the theory of biological origin as then it could not be explained why there were hydrocarbon reserves on other planets when there had been no life on them. This theory remains controversial, Gold could not live to defend it. However an elegant experiment performed provides some evidence that Gold could indeed again be right.

Dyson wrote the following on an EDGE essay in this regard:

Just a few weeks before he died, some chemists at the Carnegie Institution in Washington did a beautiful experiment in a diamond anvil cell, [Scott et al., 2004]. They mixed together tiny quantities of three things that we know exist in the mantle of the earth, and observed them at the pressure and temperature appropriate to the mantle about two hundred kilometers down. The three things were calcium carbonate which is sedimentary rock, iron oxide which is a component of igneous rock, and water. These three things are certainly present when a slab of subducted ocean floor descends from a deep ocean trench into the mantle. The experiment showed that they react quickly to produce lots of methane, which is natural gas. Knowing the result of the experiment, we can be sure that big quantities of natural gas exist in the mantle two hundred kilometers down. We do not know how much of this natural gas pushes its way up through cracks and channels in the overlying rock to form the shallow reservoirs of natural gas that we are now burning. If the gas moves up rapidly enough, it will arrive intact in the cooler regions where the reservoirs are found. If it moves too slowly through the hot region, the methane may be reconverted to carbonate rock and water. The Carnegie Institute experiment shows that there is at least a possibility that Tommy Gold was right and the natural gas reservoirs are fed from deep below. The chemists sent an E-mail to Tommy Gold to tell him their result, and got back a message that he had died three days earlier.

6. The Deep Hot Biosphere: I am yet to read this book, though I have been thinking of reading it for almost a year now.

[The Deep Hot Biosphere, Image Source : Amazon]

In this controversial but famous theory Gold proposes that the entire crust of the Earth uptill a depth of a few miles is populated by living creatures. The biosphere that we see is only a very small part of it. The most ancient part of it is much larger and is much warmer. In 1992 Gold referred to ocean vents that pump bacteria from the depth of the Earth in support of his views. A number of such hydrothermal vents have since then been discovered. There is increasing evidence that his yet another controversial theory might just be right. Even if it is not, the evidence collected will help us understand our planet much better.

[A Black Smoker Hydrothermal Vent]

Finally Quoting Prof Freeman Dyson on him again:

Gold’s theories are always original, always important, usually controversial, and usually right.

References and Recommended Reads:

1. The Scientist as Rebel : Chapter 3 – Freeman Dyson (Amazon)

2. The Inertia of Scientific Thought – Thomas Gold

3. The Deep Hot Biosphere – Thomas Gold

4. Heretical Thoughts about Science and Society – Freeman Dyson

Onionesque Reality Home >>

Read Full Post »

Quoting the great English born American physicist, mathematician, writer, humanist Freeman Dyson ( Born December 15, 1923-).

[Photo Source: SNS-IAS, Princeton]

So long as you have courage and a sense of humor, it is never too late to start life afresh.

Very deep quote, especially if you think you can replace “life” with almost anything else. Probably we all know the fact so well put in this quote but refuse to acknowledge it when it matters.

Onionesque Reality Home >>

Read Full Post »

[Photo Source : NASA]

Freeman Dyson is a professor emeritus of Physics at the Institute of Advanced Study at Princeton. Prof Freeman has always been one of my heroes and i regard him as one of the coolest physicists alive today.  I was introduced to him and his work through “What Do You Care What Other People Think” by Richard Feynman years ago.

He thinks ahead of the present generation and is also conspicuously agnostic which i dare say goes against the mainstream in science today, where being politically correct is one problem. These two things lead to very contrasting views on the man. Many in the scientific community, mostly due to the latter thing about him refer to him as a dreamer and many others portray him as a dreamer mad scientist for ideas such Dyson Spheres, Dyson Trees etc, ideas that are too fantastic for most people to digest.

Dyson had also been involved in the fantastic idea of the Project Orion, on which i have dedicated quite a few previous posts. Again many regard the idea of using nuclear fuel to power space ships as absurd, but i have always believed that it is a wonderful idea and i have also tried to write why. Many people think that Dyson has only been involved in such fantasy science, however one must note that he has made many important contributions to quantum physics and mathematics also or “mainstream science”, I have always believed that Freeman Dyson deserved the Nobel prize for QED along with his fellow researchers, he probably missed out due to the three limit on the number of people getting the prize at once. During a discussion with Robert Bradbury, he wholeheartedly agreed with my thinking! A quick search on Google scholar for him indicates about 1600 publications that have his name on the main text. And one must remember that Dyson never took a PhD, probably the only only one to reach IAS without one. Though i am not sure about that.

Below is an excerpt from an essay by Dyson that discusses the need for heretics or people thinking “out of the box” and how the progress in the society is based on such thinking, even if it is utterly and totally wrong! This essay is a little old, but i decided to post it anyway!

The excerpt is originally from his book: A Many-Colored Glass – Reflections on the place of life in the Universe. A second source is here.


In the modern world, science and society often interact in a perverse way. We live in a technological society, and technology causes political problems. The politicians and the public expect science to provide answers to the problems. Scientific experts are paid and encouraged to provide answers. The public does not have much use for a scientist who says, “Sorry, but we don’t know”. The public prefers to listen to scientists who give confident answers to questions and make confident predictions of what will happen as a result of human activities. So it happens that the experts who talk publicly about politically contentious questions tend to speak more clearly than they think. They make confident predictions about the future, and end up believing their own predictions. Their predictions become dogmas which they do not question. The public is led to believe that the fashionable scientific dogmas are true, and it may sometimes happen that they are wrong. That is why heretics who question the dogmas are needed.

As a scientist I do not have much faith in predictions. Science is organized unpredictability. The best scientists like to arrange things in an experiment to be as unpredictable as possible, and then they do the experiment to see what will happen. You might say that if something is predictable then it is not science. When I make predictions, I am not speaking as a scientist. I am speaking as a story-teller, and my predictions are science-fiction rather than science. The predictions of science-fiction writers are notoriously inaccurate. Their purpose is to imagine what might happen rather than to describe what will happen. I will be telling stories that challenge the prevailing dogmas of today. The prevailing dogmas may be right, but they still need to be challenged. I am proud to be a heretic. The world always needs heretics to challenge the prevailing orthodoxies. Since I am heretic, I am accustomed to being in the minority. If I could persuade everyone to agree with me, I would not be a heretic.

We are lucky that we can be heretics today without any danger of being burned at the stake. But unfortunately I am an old heretic. Old heretics do not cut much ice. When you hear an old heretic talking, you can always say, “Too bad he has lost his marbles”, and pass on. What the world needs is young heretics. I am hoping that one or two of the people who read this piece may fill that role.

Two years ago, I was at Cornell University celebrating the life of Tommy Gold, a famous astronomer who died at a ripe old age. He was famous as a heretic, promoting unpopular ideas that usually turned out to be right. Long ago I was a guinea-pig in Tommy’s experiments on human hearing. He had a heretical idea that the human ear discriminates pitch by means of a set of tuned resonators with active electromechanical feedback. He published a paper explaining how the ear must work, [Gold, 1948]. He described how the vibrations of the inner ear must be converted into electrical signals which feed back into the mechanical motion, reinforcing the vibrations and increasing the sharpness of the resonance. The experts in auditory physiology ignored his work because he did not have a degree in physiology. Many years later, the experts discovered the two kinds of hair-cells in the inner ear that actually do the feedback as Tommy had predicted, one kind of hair-cell acting as electrical sensors and the other kind acting as mechanical drivers. It took the experts forty years to admit that he was right. Of course, I knew that he was right, because I had helped him do the experiments.

Later in his life, Tommy Gold promoted another heretical idea, that the oil and natural gas in the ground come up from deep in the mantle of the earth and have nothing to do with biology. Again the experts are sure that he is wrong, and he did not live long enough to change their minds. Just a few weeks before he died, some chemists at the Carnegie Institution in Washington did a beautiful experiment in a diamond anvil cell, [Scott et al., 2004]. They mixed together tiny quantities of three things that we know exist in the mantle of the earth, and observed them at the pressure and temperature appropriate to the mantle about two hundred kilometers down. The three things were calcium carbonate which is sedimentary rock, iron oxide which is a component of igneous rock, and water. These three things are certainly present when a slab of subducted ocean floor descends from a deep ocean trench into the mantle. The experiment showed that they react quickly to produce lots of methane, which is natural gas. Knowing the result of the experiment, we can be sure that big quantities of natural gas exist in the mantle two hundred kilometers down. We do not know how much of this natural gas pushes its way up through cracks and channels in the overlying rock to form the shallow reservoirs of natural gas that we are now burning. If the gas moves up rapidly enough, it will arrive intact in the cooler regions where the reservoirs are found. If it moves too slowly through the hot region, the methane may be reconverted to carbonate rock and water. The Carnegie Institute experiment shows that there is at least a possibility that Tommy Gold was right and the natural gas reservoirs are fed from deep below. The chemists sent an E-mail to Tommy Gold to tell him their result, and got back a message that he had died three days earlier. Now that he is dead, we need more heretics to take his place.

Thought provoking indeed!

Onionesque Reality Home >>

Read Full Post »

Quoting Freeman Dyson FRS

In desperation I asked Fermi whether he was not impressed by the agreement between our calculated numbers and his measured numbers. He replied, “How many arbitrary parameters did you use for your calculations?” I thought for a moment about our cut-off procedures and said, “Four.” He said, “I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” With that, the conversation was over.

Source: “A meeting with Enrico Fermi” in Nature 427 (22 January 2004), p. 297

Read Full Post »